Skip to content

Chapter 3: Discrete-Time Fourier Transform

Introduction

The Discrete-Time Fourier Transform (DTFT) provides a frequency-domain representation for discrete-time aperiodic signals.

Definition

Definition: DTFT

The Discrete-Time Fourier Transform of x[n] is:

X(ejω)=n=+x[n]ejωn

The inverse DTFT is:

x[n]=12πππX(ejω)ejωndω

Proposition: Periodicity

The DTFT is periodic with period 2π:

X(ej(ω+2π))=X(ejω)

Therefore, we only need to consider ω[π,π] or [0,2π].

Existence Conditions

Proposition: Sufficient Condition

The DTFT exists if x[n] is absolutely summable:

n=+|x[n]|<

Common DTFT Pairs

Signal x[n]DTFT X(ejω)
δ[n]1
12πk=δ(ω2πk)
u[n]11ejω+πδ(ω)
anu[n],|a|<111aejω
ejω0n2πδ(ωω0) (periodic extension)
cos(ω0n)π[δ(ωω0)+δ(ω+ω0)]
sin(ωcn)πnrect(ω/2ωc)

Properties

Theorem: DTFT Properties

Let x[n]X(ejω).

Linearity:

ax[n]+by[n]aX(ejω)+bY(ejω)

Time Shift:

x[nn0]X(ejω)ejωn0

Frequency Shift:

x[n]ejω0nX(ej(ωω0))

Time Reversal:

x[n]X(ejω)

Conjugation:

x[n]X(ejω)

Differentiation in Frequency:

nx[n]jdX(ejω)dω

Convolution:

x[n]h[n]X(ejω)H(ejω)

Multiplication:

x[n]y[n]12πX(ejω)Y(ejω)

where denotes circular convolution over [π,π].

Parseval's Theorem

Theorem: Parseval's Theorem

n=+|x[n]|2=12πππ|X(ejω)|2dω

Discrete Fourier Transform (DFT)

Definition: DFT

For a finite-length sequence x[n] of length N, the DFT is:

X[k]=n=0N1x[n]ej2πkn/N,k=0,1,,N1

The inverse DFT is:

x[n]=1Nk=0N1X[k]ej2πkn/N,n=0,1,,N1

Relationship with DTFT

The DFT samples the DTFT at N equally spaced frequencies:

X[k]=X(ejω)|ω=2πk/N

Twiddle Factor

Definition: Twiddle Factor

WN=ej2π/N

The DFT can be written as:

X[k]=n=0N1x[n]WNkn

Fast Fourier Transform (FFT)

Theorem: FFT Complexity

The FFT is an efficient algorithm to compute the DFT:

  • Direct DFT computation: O(N2) operations
  • FFT (radix-2): O(Nlog2N) operations

For N=1024, FFT is about 100 times faster.

Example: 8-Point DFT

For x[n]={1,1,1,1,0,0,0,0} (rectangular pulse):

X[k]=n=03ej2πkn/8=1ejπk1ejπk/4

The magnitude spectrum |X[k]| shows the main lobe centered at k=0 with side lobes.